WJEC (Eduqas) Physics GCSE

2: Particle Model of Matter Detailed Notes

(Content in bold is for higher tier only)

Changing State

Density

Density is a measure of mass per unit volume, measured in $\mathrm{kg} / \mathrm{cm}^{3}$ (sometimes $\mathrm{g} / \mathrm{cm}^{3}$).

$$
\rho=\frac{m}{V}
$$

ρ is density $\left(\mathrm{kg} / \mathrm{m}^{3}\right), m$ is mass (kg) and V is volume $\left(\mathrm{m}^{3}\right)$
To calculate the density of an object, its volume must be calculated. For regular objects this can be done by measuring its dimensions whereas for irregular objects volume can be measured from displaced water in a measuring cylinder.

This principle helps to explain the differences in states of matter. Particles in a gas spread out to occupy a greater volume meaning they have a lower density than solid and liquids, which occupy smaller volumes and therefore have higher densities.

> Diagram showing the varying volumes and densities of the three main states of matter (tes.com)

Physical Changes

As a substance changes state, the quantity of it remains fixed. However, the volume it occupies can change and therefore also its density. This is explained using kinetic theory.

As a solid is heated, the particles gain energy and therefore vibrate more. This means they start to take up a greater space, increasing the volume. Therefore as a liquid, the same mass of substance will occupy a greater volume. The same is true for the change from liquid to gas. Gases occupy the greatest volume as the particles vibrate vigorously in all directions.

The chemical properties of the substance remain the same even when state changes, meaning it will still react the same way in any chemical reactions. Physical properties do change when a substance changes state. These physical changes can be reversed, unlike chemical changes, when the substance returns to its original state.

Comparing volume of solids, liquids and gases (WAMC.tes.com).

The Behaviour of Gases

Pressure of a gas is caused by the collision of molecules with the container. These collisions create an outwards pushing force (pressure) that is greater than normal atmospheric pressure outside of the container.

Pressure

Pressure is the force exerted per unit area, measured in pascals.

$$
\begin{gathered}
p=\underline{F} \\
\boldsymbol{p} \text { is pressure in Pascals }(\mathrm{Pa}), \boldsymbol{F} \text { is force in Newtons }(\mathrm{N}) \text { and } \mathrm{A} \text { is area in square meters }\left(\mathrm{m}^{2}\right)
\end{gathered}
$$

One pascal is equal to one newton per square meter ($\mathrm{N} / \mathrm{m}^{2}$). Pressure produces a force acting at right angles to any surface.

Changing Temperatures

When the temperature of a gas is changed but the volume is fixed, the pressure of the gas changes. If the temperature of the gas increases, the gas particles will gain energy so they vibrate faster and more vigorously. Therefore collisions with the container increase and pressure increases.

If the temperature of the gas decreases, the particles vibrate slower and less vigorously so there are less frequent collisions with the container. Therefore pressure decreases.

Boyles's Law

This law relates the volume and pressure of a gas held at a constant temperature. Volume and pressure are inversely related so that if the volume of the gas increases, its pressure will decrease. Using this relationship, it is said that the product of pressure and volume of a gas at constant temperature is equal to a constant.

$$
p V=k
$$

p is pressure (Pa), V is volume $\left(\mathrm{m}^{3}\right)$ and k is a constant.

Therefore, for a substance changing state, the pressure and volume of the first state will be equal to the pressure of volume occupied by the second state.

$$
\begin{gathered}
p_{1} V_{1}=p_{2} V_{2} \\
\boldsymbol{p} \text { is pressure }(\mathrm{Pa}) \text { and } \mathrm{V} \text { is volume }\left(\mathrm{m}^{3}\right) .
\end{gathered}
$$

Work on a Gas

Forces can be applied to a gas, transferring energy to it. As this force is applied, work is done in it. An example of this is compressing a gas by reducing its volume, increasing its pressure as well. Mechanical work done to compress the gas transfers energy from the machine's store of chemical energy to the internal energy of the gas.

Compression of a gas (s-cool.co.uk).

Changes in temperature also change the energy of a gas. Gases will expand to occupy a greater volume at increased temperatures and will compress to occupy a smaller volume at lower temperatures.

